重庆市育才中学校高 2025 届 2022-2023 学年(下) 3 月月考

数学试题

本试卷为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干 净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。

第 1 卷

- 一、选择题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符 合题目要求的.
- 1. 己知平面向量 $\vec{a} = (1,0), \vec{b} = (-1,k), \vec{c} = (2,1), 若 (\vec{a} + 2\vec{b}) / (\vec{c}, 则 k) = (-1,k), \vec{c} = (2,1), 若 (\vec{a} + 2\vec{b}) / (\vec{c}, -1, -1)$
 - A. 1
- C. $-\frac{1}{4}$ D. $\frac{1}{4}$

- 2. 已知 α 是第二象限角,则点 $P(\tan \frac{\alpha}{2}, \sin 2\alpha)$ 位于
 - A. 第一象限
- B. 第二象限 C. 第三象限
- D. 第四象限
- 3. 如图, C_{60} 是一种碳原子簇,它是由60个碳原子构成的,其结构是以正五边形和正六边形面组成的凸32面体, 这60个C原子在空间进行排列时,形成一个化学键最稳定的空间排列位置,恰好与足球表面格的排列一致, 因此也叫足球烯.根据杂化轨道的正交归一条件,两个等性杂化轨道的最大值之间的夹角 θ ($0 < heta \le 180^\circ$)满足: $\alpha+\beta\cos\theta+\gamma(\frac{3}{2}\cos^2\theta-\frac{1}{2})+\delta(\frac{5}{2}\cos^3\theta-\frac{3}{2}\cos\theta)=0\ ,\ \ 式中\alpha,\beta,\gamma,\delta\, \\ \text{分别为杂化轨道中}\, s,p,d,f\, \\ \text{轨道所占的}$ 百分数. C_{60} 中的杂化轨道为等性杂化轨道,且无d,f轨道参与杂化,碳原子杂化轨道理论计算值为 $sp^{2.28}$,它 表示参与杂化的 s,p 轨道数之比为1:2.28,由此可计算得一个 $^{C}_{60}$ 中的凸 32 面体结构中的五边形个数和两个等 性杂化轨道的最大值之间的夹角的余弦值分别为 A. $20, -\frac{25}{57}$ B. $20, \frac{25}{57}$ C. $12, -\frac{25}{57}$

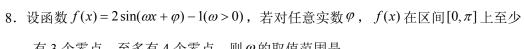
- D. $12, \frac{25}{57}$

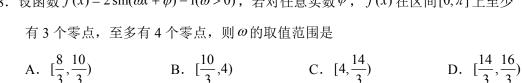
- 4. 己知 $\sin \alpha + \cos \alpha = -\frac{17}{13}$, $\alpha \in (\pi, \frac{5}{4}\pi)$, 则 $\sin \alpha \cos \alpha =$
- B. $-\frac{2}{13}$ C. $\frac{7}{13}$
- 5. 已知非零向量 \vec{a} , \vec{b} 满足 $(\vec{a}-\vec{b}) \perp (\vec{a}-7\vec{b}), (\vec{a}+2\vec{b}) \perp (2\vec{a}-11\vec{b})$,则 $\sin < \vec{a}$, $\vec{b} >=$
 - A. $\frac{3}{5}$
- B. $\frac{4}{5}$
- C. $\frac{5}{13}$

- 6. 已知 $a = (\frac{1}{2})^{1.5}$, $b = \log_4 3$, $c = \sin^2 1$, 则a,b,c的大小关系为
- A. a < b < c B. b < c < a C. c < a < b D. a < c < b
- 7. 如图,在梯形 ABCD 中, $AD = DC = \frac{1}{2}AB = 1$ 且 $AB \perp AD$, P 为以 A 为圆心 AD 为半径的 $\frac{1}{4}$ 圆弧上的一动点,

则 $\overrightarrow{PD} \cdot (\overrightarrow{PB} + \overrightarrow{PC})$ 的最小值为

- A. $3 2\sqrt{2}$
- B. $3-3\sqrt{2}$ C. $3-4\sqrt{2}$ D. $3-5\sqrt{2}$

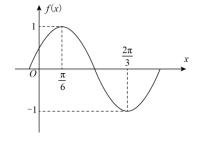




- 二、选择题: 本题共 4 小题, 每小题 5 分, 共 20 分. 在每小题给出的选项中, 有多项符合题目要求, 全部选对的得5分,部分选对的得2分,有选错的得0分.
- 9. 已知在同一平面内的向量 $\vec{a}, \vec{b}, \vec{c}$ 均为非零向量,则下列说法中正确的有
 - A. 若 $\vec{a}//\vec{b}.\vec{b}//\vec{c}$, 则 $\vec{a}//\vec{c}$
- B. 若 $\vec{a} \cdot \vec{c} = \vec{a} \cdot \vec{b}$,则 $\vec{b} = \vec{c}$
- C. $(\vec{a} \cdot \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \cdot \vec{c})$

- D. \vec{a}_{a}/\vec{b} 且 \vec{a}_{a} , 则 $\vec{c} \cdot (\vec{a} + \vec{b}) = 0$
- 10. 函数 $f(x) = A \sin(\omega x + \varphi) \left(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2}\right)$ 的部分图象如图所示,则下列说法中正确的有

 - B. $(-\frac{7\pi}{12},0)$ 为函数 f(x) 的一个对称中心点
 - C. $\left[\frac{11}{6}\pi, \frac{7}{3}\pi\right]$ 为函数 f(x) 的一个递增区间
 - D. 可将函数 $\cos 2x$ 向右平移 $\frac{1}{6}\pi$ 个单位得到 f(x)



- 11. 已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)= e^x ,则下列说法中正确的有
 - A. g(0)=1

B. $f^2(x) - g^2(x) = 1$

C. $f(2x) = 2f(x) \cdot g(x)$

- D. 若 f(m+2) + f(m) > 0, 则 m > -1
- 12. 已知两个不相等的非零向量 \vec{a}, \vec{b} , 两组向量 $\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4, \vec{x}_5$ 和 $\vec{y}_1, \vec{y}_2, \vec{y}_3, \vec{y}_4, \vec{y}_5$ 均由 3 个 \vec{a} 和 2 个 \vec{b} 排列而成,

记 $S = \overrightarrow{x_1} \cdot \overrightarrow{y_1} + \overrightarrow{x_2} \cdot \overrightarrow{y_2} + \overrightarrow{x_3} \cdot \overrightarrow{y_3} + \overrightarrow{x_4} \cdot \overrightarrow{y_4} + \overrightarrow{x_5} \cdot \overrightarrow{y_5}$, S_{\min} 表示 S 所有可能取值中的最小值,则下列命题正确的是

A. S有3个不同的值

- B. $S_{\min} = 2\vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2$
- C. 若 $\vec{a}//\vec{b}$,则 S_{\min} 与 $|\vec{b}|$ 无关 D. 若 $|\vec{a}| = 2|\vec{b}|$, $S_{\min} = 4|\vec{b}|^2$,则 $\vec{a} \perp \vec{b}$

三、填空题:本大题共4小题,每小题5分,共20分.

- 13. 已知 A(1,2), B(4,5) 且 $\overrightarrow{AP} = 2\overrightarrow{PB}$,则 P 的坐标为______.
- 14. 已知 $\sin(2023\pi \alpha) = 2\sin(\frac{2023\pi}{2} + \alpha)$,则 $\sin 2\alpha + \cos^2 \alpha = \underline{\hspace{1cm}}$
- 15. 写出一个同时满足下列三个条件的函数 $f(x) = _____.$
 - ① f(x) 不是常数函数
- ② f(x+1) 为奇函数
- (3) f(x+2) = f(2-x)
- 16. 已知函数 $f(x) = \frac{1}{2}\cos 2x \cos x \frac{1}{2}, x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
 - (1) f(x) 的值域为______;
- (2) 设 $g(x) = a(3\sin x + 4\cos x)$,若对任意的 $x_1 \in [-\frac{\pi}{2}, \frac{\pi}{2}]$,总存在 $x_2 \in [0, \pi]$,使得 $f(x_1) = g(x_2)$,则实数 a的取值范围为______.

四、解答题:本大题6个小题,共70分,解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.

17. (本小题 10分)

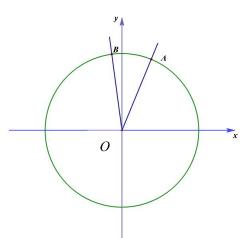
已知平面向量 \vec{a} , \vec{b} , \vec{c} 满足 $\vec{a} = (2,0)$, $|\vec{b}| = 1$, $\vec{c} = \vec{a} - t\vec{b}$, $(t \in R)$, $\langle \vec{a}, \vec{b} \rangle = \frac{\pi}{3}$.

- (1) 求 \vec{b} 在 \vec{a} 上的投影向量的坐标;
- (2) 当 \vec{c} 最小时,求 \vec{b} 与 \vec{c} 的夹角.

18. (本小题 12 分)

如图,在平面直角坐标系 xOy 中,角 α 的终边与单位圆的交点为 $A(x_1,y_1)$,角 $\alpha+\frac{\pi}{6}$ 终边与单位圆的交点为 $B(x_2,y_2)$.

- (1) 若 $\alpha \in (0, \frac{\pi}{2})$, 求 $x_1 + y_2$ 的取值范围;
- (2) 若点 *B* 的坐标为 $(-\frac{1}{3}, \frac{2\sqrt{2}}{3})$, 求点 *A* 的坐标.



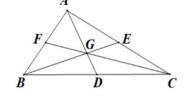
19. (本小题 12 分)

已知平面向量 \overrightarrow{OM} , \overrightarrow{ON} 不共线,由平面向量基本定理知,对于该平面内的任意向量 \overrightarrow{OP} ,都存在唯一的有序实数对(x,y),使得 $\overrightarrow{OP}=x\overrightarrow{OM}+y\overrightarrow{ON}$.

- (1) 证明: P,M,N三点共线的充要条件是x+y=1;
- (2) 如图, $\triangle ABC$ 的重心 G 是三条中线 AD, BE, CF 的交点, 证明: 重心为中线的三等分点.

20. (本小题 12 分)

已知向量 $\vec{a} = (2\sqrt{3}\sin\frac{x}{2} + \cos\frac{x}{2}, \sin\frac{x}{2}), \vec{b} = (\cos\frac{x}{2}, -\sin\frac{x}{2}), \quad$ 函数 $f(x) = \vec{a} \cdot \vec{b}$.



- (1) 求函数 f(x) 的单调增区间和对称轴;
- (2) 若关于x的方程f(x)-m=0在 $\left[0,\frac{\pi}{2}\right]$ 上有两个不同的解,记为 α , β .
 - ①求实数 m 的取值范围;

②证明:
$$\cos(\alpha - \beta) = \frac{m^2}{2} - 1$$
.

21. (本小题 12分)

已知 $a \in R$, 函数 $f(x) = \log_2(x^2 - 3x + a)$.

- (1) 若函数 f(x) 的图像经过点(3,1), 求不等式 f(x) < 1 的解集;
- (2)设a>2,若对任意 $t\in[3,4]$,函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

22. (本小题 12分)

设 n 次多项式 $T_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0$, $(a_n \neq 0)$,若其满足 $T_n(\cos \theta) = \cos n\theta$,则称这些多项式 $T_n(x)$ 为切比雪夫多项式. 例如:由 $\cos 2\theta = 2\cos^2 \theta - 1$ 可得切比雪夫多项式 $T_2(x) = 2x^2 - 1$.

- (1) 求切比雪夫多项式 $T_3(x)$;
- (2) 求 sin 18°的值;
- (3) 已知方程 $8x^3 6x 1 = 0$ 在 (-1,1) 上有三个不同的根,记为 x_1, x_2, x_3 ,求证: $x_1 + x_2 + x_3 = 0$.